Long-term dependency1 [논문리뷰] RNN :: LSTM(Long Short Term Memory) 톺아보기 이 블로그 글은 딥러닝 공부를 목적으로, 최성준 박사님 강의와 여러 자료들을 참고하여 LSTM의 개념에 대해 정리하였습니다. 기존의 인공 신경망의 은닉층에는 맥락이 고려되지 않은 단순한 뉴런만 배치되어 있는 구조이다. 과거의 은닉층(hidden layer)을 도입하여 시계열 데이터를 예측할 수 있지만 vanishing gradient 문제가 발생한다. 반면, 순환신경망(RNN)은 과거의 이벤트가 미래의 결과에 영향을 줄 수 있는 순환 구조(directed cycle)를 가지고 있다. 데이터 중에서도 연속적인 속성(sequence)을 띄고 있는 번역, 문자, 음성 인식 등 다양한 분야에서 RNN이 활용되고 있다. LSTM은 RNN의 주요 알고리즘으로 각광받고 있는 모델이다. LSTM(Long Short T.. 2019. 1. 5. 이전 1 다음